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The discussion concerns free wave motions generated from rest in a finite region
of an ocean of heavy liquid lying on a horizontal plane. It is shown that the hori-
zontal first moment of the free-surface displacement varies linearly with time.
Hence, if the total volume displaced is not zero and therefore the centroid of the
displacement is definable, the centroid travels with a constant horizontal velo-
city as the wave motion evolves. This conclusion holds exactly for waves of any
amplitude and even remains applicable subsequent to the breaking of waves.

The purpose of this note is to demonstrate an exact property of water waves
which appears not to have been noticed previously, although a corresponding
result was derived on the basis of long-wave approximations by Keulegan &
Patterson (1940). The property is especially remarkable in that it does not depend
on the wave motion being small or irrotational.

Ficure 1. Definition sketch.

We consider waves formed in an ocean of incompressible liquid whose depth
when undisturbed is a constant A, which may be infinite (see figure 1). Axes
(x,y,2) are taken with their origin in the undisturbed free surface and with z
vertical upwards, so that the bottom is represented by z = — h. The equation of
the free surface is written 2= Ex,9,1) 1)

where ¢ is time. It is assumed that the wave motion is generated in some finite

1 On leave from University of Western Australia.

25 FLM 49



386 T. B. Benjamin and J. J. Mahony

region over a finite time, during which some liquid may be added or removed,

and subsequently the system is free from horizontal external forces. Thus no

frictional force along the bottom is allowed, but the following argument applies

precisely to a viscous as well as to an inviscid liquid in the case of infinite depth.

We take for granted that, at finite times, the flow field decays at least morerapidly

than a dipole field at sufficiently large distances from the centre of the disturbance.
The moment of the free-surface displacement is defined by

M — f : f _: ¢ dwdy, 2)

in which r = (z,y) is the horizontal position vector. Accordingly, if the total
volume displaced, i.e.

Q= f : :0 ¢dxdy, (3)

is not zero, the position of the centroid of the displacement is given by
R = M/Q. (4)

Our object is to show that dM/df is a constant vector, and henoe so is the velocity
dR/dt of the centroid.

The case of two-dimensional motions, say in the plane (z,z), is treated first
for simplicity of illustration, and then the argument is extended to the three-
dimensional problem.

Two-dimensional motions

For these there exists a stream function ¥(z,z,t) such that the velocity com-
ponents parallel to x and z are

o o
wo) = (-2, %) ©)
On the bottom z = —h where w = 0, the value of ¢ is a constant which we may
take to be zero. The kinematical condition at the free surface z = {(x, ) is
ot oL
Tz —w=0, (6)

which in the light of (5) is seen to be equivalent to

o oy
w e )
where Vy(x,t) = Yix, {(x, 1), 1} (8)

is just the value of ¢ at the free surface. The two-dimensional form of the defini-
tion (2)is -
M= f x{dx,

from which we obtain, using (7),

dM (= o © oy,
-*(—it_-— 7wx?tdx—f_wxﬁdx.
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After an integration by parts the integrated terms vanish because ¥, is by assump-
tion sufficiently small as |z| > co, and there follows

aM ®
'd_t == o wsdx (9)

Now, the total horizontal momentum, or impulse, of the liquid per unit span is
given by
© ¢ 3] 4 3¢ ©
1 =f f pudzdz = ——f f p——dzdx = — pyr.dx, (10)
—od —h —w —h 0z

- 00

where p is its (constant) density. Thus we have dM/dt = I/p. But I is & constant
in the absence, as supposed, of horizontal external forces. This fact may, of
course, be confirmed readily from the equations of motion coupled with the
assumption that the only external stress on the free surface is a constant pressure
(cf. Batchelor 1967, §3.2). The overall momentum balance is unaffected by sur-
face tension, which evidently produces no net horizontal force on a surface that
is asymptotic at both ends to the same horizontal plane.} Allowing also for vis-
cosity of the liquid, we may still assert that I is constant if 2 = oo.

The total volume displaced by the free surface, per unit span, is

=" ¢

and is obviously constant, as shown by (7). If @ + 0, the x co-ordinate of the cen-
troid is defined by X = M/Q, and we conclude from the above that

aX 1dM 1

il ) 11

i "0 & "0 const., (11)
which is the anticipated result for the two-dimensional case. Note that the velo-
city given by (11) is unrelated to the gravitational constant g, although the

evolution of the wave form will depend essentially on g.

Three-dimensional motions

The theory for this case may be made closely analogous to the preceding.
By virtue of the incompressibility of the liquid, the velocity field is solenoidal
and so is expressible as the curl of a vector potential, which may be tailored to

the conditions of the problem by including the gradient of an arbitrary scalar.
~ Specifically, in order that it should play the same réle as the stream function in
the two-dimensional theory, the vector potential is required to vanish on the
bottom and to be suitably small at infinity. It is a simple matter to verify that

z z
A= (f v(z,y,2",t)dz’, —f u(x,y,2',t)dz’, 0) (12)
- —h
has these properties (even, in fact, if the bottom is not everywhere horizontal),
and that u=(u,0,w)=VxA (13)

in consequence of the condition V.u = 0.

+ The fact that surface tension is immaterial to our conclusions was kindly pointed out
to us by a referee.
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Expressed in terms of the components A2 of this vector potential, the kine-
matical condition at the free surface, described by (1), is

8 2428l A3 (3A2 aAl)_O

ot oz ox ' oz oy
i _ods ods
o ox oy
where Av®(z,y,t) = AV¥x,y, (=, ¥,1),8}. (16)

ox oy (14)

which is equivalent to =0, (15)

Using (15), we now obtain from (2)

f f (, y dxdy
_ 8A§ oAl
—f I e L

which after integrations by parts reduces to

G- canayacay (17)

The horizontal impulse of the liquid is given by

© w0 4
I=f j j plu,v)dzdxdy
8A2 oAl
[ e ) asdens

f j — A% A dz dy, (18)

since A vanishes on the bottom. Thus we have

dM 1
== 1
T (19)
and this is a constant vector in the absence of horizontal external forces. Again,
as in the two-dimensional problem, surface tension evidently produces no net
force capable of affecting I. If the constant ¢ given by (3) is not zero, so that
the centroid of the free-surface displacement is defined by (4), it follows that

dR 1dM 1

T Qdt  pQ
This means that as the free wave motion evolves the centroid moves with a con-
stant horizontal velocity, which is originally fixed in both direction and magni-
tude by the forces initiating the wave motion.

It is worth further emphasis that the property thus demonstrated is indepen-
dent of several approximations often used in water-wave theories. The motion
of the liquid need not be irrotational, nor need the wave amplitude be small.
Surface tension may be present, and the liquid may be viscous provided it is

= const. (20)
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deep enough for shear forces along the bottom to be insignificant. Also, the free-
surface displacement { need not everywhere be a single-valued function of the
position vector r. In the two-dimensional case, if { and y, are multiple-valued,
the evaluation of integrals such as (10) can proceed unambiguously following
the transformation dx = (dz/0l)dl, where [ is arc length along the free surface;
and an obvious extension of this device is applicable to the three-dimensional
case, confirming the results as given above, It appears, therefore, that these
results will remain true subsequent to the breaking of waves.

Note that the derivation of the equality (19) is just a matter of kinematics:
the invariant property in question depends on dynamical principles only in that
ILis a constant vector. Accordingly it is easy to extend present ideas to cases where
horizontal external forces influence the wave motion, as when the bottom is not
everywhere horizontal. Letting F(f) denote the net horizontal force acting on
the liquid, one may anticipate the formula

&M _1d_F -
di2 pdt p
which can readily be confirmed by detailed calculations.

Finally it is desirable to resolve what might appear to be a conflict between the
present results and results derived by Wehausen & Laitone (1960, p. 508) on the
basis of linearized surface-wave theory. Considering the two-dimensional problem
they expressed {(x, £) as a superposition of two wave-packets, one comprised of
waves travelling to the right and the other from waves travelling to the left,
and they showed that the centroid of each moves with the group velocity of
infinitely long waves. The centroid of the total displacement, however, has a
velocity that depends on the division of the initial disturbance into right and left-
travelling components. It is well known that an arbitrary (infinitesimal) displace-
ment of the surface released from rest splits into two equal wave packets travel-
ling in opposite directions, and so evidently the initial values of { do not affect
dM|dt. In fact dM[dt is determined by the initial velocities 90/ét of the surface,
which fix the initial velocity field in the fluid; and thus the motion of the centroid
isrelated to the horizontal momentum imparted to the fluid, precisely as shown
in the foregoing discussion. While being formally correct, the conclusions reached
by Wehausen & Laitone give an extraneous view of the present issue.
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